Study of Morphometric Characters of Puntius sarana (Hamilton) from Godavari River at Nanded region (Maharashtra State)

${ }^{1}$ M.M.Deshmukh, ${ }^{2}$ K.S.Shillewar
N.E.S.Science College, Nanded, Maharashtra State
DOI: https://doi.org/10.5281/zenodo. 6655985
Published Date: 17-June-2022

Abstract

The present study was carried out to analyze morphometric measurement of Puntius sarana fish during April 2015 to March 2016. Fish specimens were collected from local fisherman at Nanded and seven morphometric characters were studied. The total length and weight of Puntius sarana were ranged from 11.00 cm to 26.6 cm and 13.6 gm to 231.41 gm respectively. The standard length and height of fish were ranged from 8.5 cm to 21.4 cm and 2.3 cm to 8.2 cm respectively. The head length and intra orbital space were ranged from 2.1 cm to 6.0 cm and 0.9 $\mathbf{c m}$ to 1.0 cm respectively. Snout to dorsal fin length was ranged from 6.8 cm to 16.6 cm .

Keywords: Puntius sarana, Morphometric, Godavari river.

1. INTRODUCTION

Godavari River is India's second largest River after the Ganga River. It's source is in Trimbakeshawar Maharashtra State. Puntius sarana (Hamilton, 1822) is a tropical fish belonging to the Puntius genus of minnow family. It can be used as both food and ornamental fish. It is omnivorous and widely distributed through the Indian sub continent including India, Bangladesh, Afghanistan, Pakistan, Nepal, Bhutan, Sri-lanka, and Thialand. Morphometric study of fish species is an important tool for exact identification of the species with the help of measuring the length, weight and other parameters (Cavalcanti et al. 1999)

2. MATERIAL AND METHOD

In order to study the morphometric measurements total 600 fish specimens were collected on monthly basis (50) from April 2015 to March 2016 from Godavari River at Nanded. The field collection were done with the help of local fisherman. The collected fish samples were preserved in 10% formalin and stored into specimen jar to study the morphometric characters. The selected morphometric measurements were measured with the help of electronic balance (MP-3000 chyo Japan) engineering divider and graduated scale in cm etc. All measurements were taken in the laboratory as Day (1875-78), Talwar and Jhingran (1991) and Jayaram(2010). The weight of all fish samples measured in gram (gm) and other morphometric parameters measure in centimeter (cm). The total length ranging between 11.00 cm to 26.6 cm . On the basis of total length, the fishes were grouped into 3 class intervals.

Observations

(Tables 1 to 6 and Fig. 1 to 5)
In order to know the relationship between any two morphometric measurement, the statistical method proposed by Snedecor (1961) were used in the present study to correlate the variables viz (1) Standard length (2) Head length (3) Diameter of eye (4) Inter orbital space (5) Pre dorsal length (6) Height of body with the total length, the linear regression was used.
$\mathrm{Y}=\mathrm{A}+\mathrm{B} \mathrm{x}$
Where $\mathrm{Y}=$ Variable, $\mathrm{x}=$ Total length $\mathrm{B}=$ Regression coefficient.
The values of constants A and B were calculated by the following formula:
$\mathrm{B}=\frac{\Sigma x y-N x-y-}{\Sigma x^{2}-N\left(x^{2}\right)}$
$\mathrm{A}=\frac{\Sigma y-B \Sigma x}{N}$
Where $\mathrm{N}=$ Number of groups
The regression analysis was made separately for each character to observe their relationship with total length as follows:

1) Total length (x) and Std. length (y)

$$
\mathrm{Y}=-2.4143+(0.9098)(\mathrm{x})
$$

2) Total length (x) and head length (y)
$\mathrm{Y}=-0.2562+(0.2303)$
3) Total length (x) and diameter of eye (y)
$\mathrm{Y}=0.8799+(0010)(\mathrm{x})$
4) Total length (x) and intra orbital space (y)
$\mathrm{Y}=1.0070+(0.002)(\mathrm{x})$
5) height of body (y)
$\mathrm{Y}=-1.3152+(0.3528)$
6) Total length (x) and snout dorsal fin length (y)
$\mathrm{Y}=0.8578+(0.0475)(\mathrm{y})$

3. RESULT AND DISCUSSION

The relationships of the above mentioned body dimensions to the total length are shown in tables (1to 6). When the variables ' y ' are plotted against total length ' x ', the points are much closed around the linear regression lines as shown in the figures(1to 6). In the present investigation an attempt has also been made to find out the percentage fluctuations in the development of different body parts in different 3 cm class intervals.

The frequency percentages were calculated by using the formula proposed by Datt (1961)
$\mathrm{P}=\frac{y}{x} \times 100$
Where $\mathrm{P}=$ Percentage of frequency

$$
\begin{aligned}
& \mathrm{y}=\text { Variables } \\
& \mathrm{x}=\text { Total length }
\end{aligned}
$$

The percentage relationship of the total length with the variables was found to fluctuate as followed:

1) For standard length between $=71.93$ and 81.6176
2) For head length between $=20.9486$ and 22.0201
3) For inter orbital space between $=3.4829$ and 7.0355
4) For snout to dorsal fin between $=57.9446$ and 61.1735
5) For height of body between $=24.9011$ and 30.1857

International Journal of Life Sciences Research
ISSN 2348-3148 (online)
Vol. 10, Issue 2, pp: (55-60), Month: April - June 2022, Available at: www.researchpublish.com
Table 1: RELATION BETWEEN TOTAL LENGTH AND STANDARD LENGTH OF Puntius sarana
$\left.\begin{array}{|l|l|l|l|l|l|l|l|}\hline \begin{array}{l}\text { Sr. } \\ \text { No. }\end{array} & \begin{array}{l}\text { Size Group } \\ (\mathrm{cm})\end{array} & \begin{array}{l}\text { Total length } \\ \text { (cm) } \\ \text { ' } \mathrm{X} \text { ' }\end{array} & \begin{array}{l}\text { Standard } \\ \text { length (cm) } \\ \text { 'Y' }\end{array} & \begin{array}{l}\text { Percentage } \\ \text { in term of } \\ \text { standard } \\ \text { Length } \\ \text { ' } \mathrm{P} '\end{array} & \mathrm{X}^{2} & \mathrm{XY} & \\ \hline \text { Calculated } \\ \mathrm{Y}\end{array}\right]$

Table 2: RELATION BETWEEN TOTAL LENGTH AND STANDARD LENGTH OF Puntius sarana

Sr. No.	Size Group (cm)	Total length (cm) ' X '	Standard length $(\mathrm{cm})^{\prime} \mathrm{Y}^{\prime}$	Percentage in term of standard Length 'P'	X^{2}	XY	
1.	$10.5-13.5$	12.6588	9.7921	71.9367	160.02	123.87	Calculated Y
2.	$13.6-16.5$	14.8520	11.47	76.6801	220.52	170.32	11.096
3.	$16.6-19.5$	17.9411	14.01	77.4804	321.04	251.33	13.9085
4.	$19.6-22.5$	20.04	16.51	78.8922	401.60	336.80	15.818
5.	$22.6-25.5$	24.03	18.57	80.8988	577.44	455.84	19.4481
6.	$25.6-28.5$	25.842	20.12	81.6176	667.70	519.90	21.0967
		$\Sigma \mathrm{X}=115.3639$	$\Sigma \mathrm{Y}=90.4721$		$\Sigma \mathrm{X}^{2}=2348.32$	$\Sigma \mathrm{XY}=1858.06$	
		$\overline{\mathrm{X}}=19.2266$	$\overline{\mathrm{Y}}=15.0786$				

Table 3: RELATION BETWEEN TOTAL LENGTH AND HEAD LENGTH OF Puntius sarana

Sr. No.	Size Group (cm)	Total length (cm) ' X '	Head length (cm) 'Y'	Percentage in terms of Head length ' P	X^{2}	XY	Calculated Y
1.	$10.5-13.5$	12.6588	2.5549	20.9486	160.02	32.3419	2.6591
2.	$13.6-16.5$	14.8520	3.2269	21.2794	220.52	47.9259	3.1642
3.	$16.6-19.5$	17.9411	3.7744	21.5719	321.04	67.7168	3.8756
4.	$19.6-22.5$	20.04	4.701	21.7065	401.60	94.2080	4.359
5.	$22.6-25.5$	24.03	5.1486	21.9309	577.44	123.7208	5.2779
6.	$25.6-28.5$	25.842	5.625	22.0201	667.70	145.3612	5.6952
		$\Sigma \mathrm{X}=115.3639$	$\Sigma \mathrm{Y}=25.0308$		$\Sigma \mathrm{X}^{2}=2348.32$	$\Sigma \mathrm{XY}=511.2746$	
		$\overline{\mathrm{X}}=19.2266$	$\overline{\mathrm{Y}}=4.1718$				

Table 4: RELATION BETWEEN TOTAL LENGTH AND INTRA ORBITAL SPACE OF Puntius sarana

Sr. No.	Size Group (cm)	Total length (cm) ' X '	Intra orbital space (IOS) (cm)	Percentage in terms of intra orbital space 'P'	X^{2}	XY	Calculated Y
1.	$10.5-13.5$	12.6588	1.0990	8.6166	160.02	13.9120	1.9023
2.	$13.6-16.5$	14.8520	1.1205	7.3400	220.52	16.6416	1.0967
3.	$16.6-19.5$	17.9411	1.0733	6.1315	321.04	19.2516	1.1028
4.	$19.6-22.5$	20.04	1.094	5.4890	401.60	21.9237	1.1070
5.	$22.6-25.5$	24.03	1.0837	4.6192	577.44	26.9237	1.1150
6.	$25.6-28.5$	25.842	1.1625	4.2956	667.70	30.0413	1.1186
		$\Sigma \mathrm{X}=115.3639$	$\Sigma \mathrm{Y}=6.633$		$\Sigma \mathrm{X}^{2}=2348.32$	$\Sigma \mathrm{XY}=128.6939$	
		$\overline{\mathrm{X}}=19.2266$	$\overline{\mathrm{Y}}=1.1055$				

International Journal of Life Sciences Research

Table 5: RELATION BETWEEN TOTAL LENGTH AND SNOUT TO DORSAL LENGTH OF Puntius sarana

Sr.No.	Size Group (cm)	Total length (cm) ' X '	Snout to dorsal length (cm) ' Y '	Percentage in terms of snout to dorsal length	X^{2}		
'P'							

Table 6: RELATION BETWEEN TOTAL LENGTH AND HEIGHT OF Puntius sarana
$\left.\begin{array}{|l|l|l|l|l|l|l|l|}\hline \begin{array}{l}\text { Sr. } \\ \text { No. }\end{array} & \begin{array}{l}\text { Size Group } \\ (\mathrm{cm})\end{array} & \begin{array}{l}\text { Total length } \\ (\mathrm{cm}) \\ \text { ' } \mathrm{X} \text { ' }\end{array} & \begin{array}{l}\text { Height of } \\ \text { fish } \\ \text { 'Y' }\end{array} & \begin{array}{l}\text { Percentage } \\ \text { in terms of } \\ \text { Height of } \\ \text { fish } \\ \text { ' } \mathrm{P} '\end{array} & \mathrm{X}^{2} & & \\ \hline \text { Calculated } \\ \mathrm{Y}\end{array}\right]$

Fig. 1. Relationship between total length and standard length of P. sarana

Vol. 10, Issue 2, pp: (55-60), Month: April - June 2022, Available at: www.researchpublish.com

Fig. 2. Relationship between total length and head length of P. sarana

Fig. 3. Relationship between total length and diameter eye of P. sarana

Fig. 4. Relationship between total length and intra orbital space

Fig.5. Relationship between total length of snount to dorsal length

ACKNOWLEDGEMENT

The authors are thankful to Department of Fishery Science, N.E.S.Science College, Nanded (M.S.), India for providing the facility and encouragement.

REFERENCES

[1] Badkur R and Prashar A. 2015: Morphometric approach towards grow performance of Mahseer (Tor tor) in river Narmada near Hoshangabad (M.P.). Indian Journal of Pharmaceutical and Biological Research 3(2):66-72.
[2] Barlow GW.1961. Causes and significance of morphological variation in fishes. Systematic zoology 10: 105-117.
[3] Cavalcanti MJ, Montelro LR PRD. 1999. Landmark based Morphometric analysis in selected species of Serranid fishes (perciformes: Teleostes). Zoological studies 38(3): 287-294.
[4] Jayaram KC.201.The fresh water fishes of the Indian region. Narendra publishing house, Delhi.
[5] Nautiyal P and Lal MS. 1988. Natural history of Garhwal Himalayam. Mahseer: Racial composition. Indian Journal of Animal Sciences 58(2): 283-294.
[6] Rahman A.KA 1989. Freshwater fishes of Bangladesh I ${ }^{\text {st }}$ ed, Zoological Society of Bangladesh, Dhaka, Bangladesh. p.p.183.
[7] Zafar M, Nazir A Akhtar N, Mehdi Naqvi SMH and Zia-ur-Rehman M.2002. Studies on meristic counts and morphometric measurements of Mahseer (Tor putitora) from a spawning ground of Himalayan foot hill River Korang Islamabad, Pakistan. Pakistan journal of Biological Sciences 5(6) 733-35.

